IES IES

M.Sc. Chengzhi Wu

  • Karlsruher Institut für Technologie – KIT
    Institut für Anthropomatik und Robotik (IAR)
    Lehrstuhl für Interaktive Echtzeitsysteme (IES)
    Prof. Dr.- Ing. Jürgen Beyerer
    Vincenz-Prießnitz-Straße 3
    76131 Karlsruhe

Lebenslauf

Chengzhi Wu received his master’s degree in Control Science and Engineering from Nanjing University in 2016 and his bachelor’s degree in Automation from Nanjing University in 2013. He worked in Institute for Visualization and Data Analysis (IVD) at Karlsruher Institut für Technologie (KIT) as a scientific staff from April 2017 to March 2019. Since April 2019, he has joined Lehrstuhl für Interaktive Echtzeitsysteme (IES) at KIT and continued his work towards a PhD degree. His primary research focus is 3D computer vision, encompassing various areas. In applied research, he is deeply involved in the AgiProbot project (feel free to take the virtual tour!), where he handles tasks like point cloud segmentation, synthetic data generation, and sim2real transfer learning. In terms of theoretical research, he is engaged in developing new algorithms for self-supervised learning, 3D shape generation, and point cloud sampling (please check the CVPR highlight paper).

 

Veröffentlichungen


2024
RIXA - Explaining Artificial Intelligence in Natural Language
Becker, M.; Vishwesh, V.; Birnstill, P.; Schwall, F.; Wu, S.; Beyerer, J.
2024. 2023 IEEE International Conference on Data Mining Workshops (ICDMW), Shanghai, 1st-4th December 2023, 875–884, Institute of Electrical and Electronics Engineers (IEEE). doi:10.1109/ICDMW60847.2023.00118
Open Panoramic Segmentation
Zheng, J.; Liu, R.; Chen, Y.; Peng, K.; Wu, C.; Yang, K.; Zhang, J.; Stiefelhagen, R.
2024. European Conference on Computer Vision, 164–182
Open Panoramic Segmentation
Zheng, J.; Liu, R.; Chen, Y.; Peng, K.; Wu, C.; Yang, K.; Zhang, J.; Stiefelhagen, R.
2024. arxiv. doi:10.48550/arXiv.2407.02685
6D Pose Estimation on Point Cloud Data through Prior Knowledge Integration: A Case Study in Autonomous Disassembly
Wu, C.; Fu, H.; Kaiser, J.-P.; Barczak, E. T.; Pfrommer, J.; Lanza, G.; Heizmann, M.; Beyerer, J.
2024. Procedia CIRP, 122, 193 – 198. doi:10.1016/j.procir.2024.01.028
2023
Attention-based Part Assembly for 3D Volumetric Shape Modeling
Wu, C.; Zheng, J.; Pfrommer, J.; Beyerer, J.
2023. 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Vancouver, 17th-24th June 2023, 2717–2726, Institute of Electrical and Electronics Engineers (IEEE). doi:10.1109/CVPRW59228.2023.00272
Attention-Based Point Cloud Edge Sampling
Wu, C.; Zheng, J.; Pfrommer, J.; Beyerer, J.
2023. 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, 17th - 24th June 2023, 5333–5343, Institute of Electrical and Electronics Engineers (IEEE). doi:10.1109/CVPR52729.2023.00516
SynMotor: A Benchmark Suite for Object Attribute Regression and Multi-Task Learning
Wu, C.; Qiu, L.; Zhou, K.; Pfrommer, J.; Beyerer, J.
2023. Proceedings of the 18th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2023) - Volume 4, Lissabon, 19th-21st February 2023, 529 – 540, SciTePress. doi:10.5220/0011718400003417
RIXA - Explaining Artificial Intelligence in Natural Language
Becker, M.; Schwall, F.; Vishwesh, V.; Wu, S.; Birnstill, P.; Beyerer, J.
2023. doi:10.5445/IR/1000167428
Sim2real Transfer Learning for Point Cloud Segmentation: An Industrial Application Case on Autonomous Disassembly
Wu, C.; Bi, X.; Pfrommer, J.; Cebulla, A.; Mangold, S.; Beyerer, J.
2023. 2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), 4520–4529, Institute of Electrical and Electronics Engineers (IEEE). doi:10.1109/WACV56688.2023.00451
2022
Agiles Produktionssystem mittels lernender Roboter bei ungewissen Produktzuständen am Beispiel der Anlasser-Demontage = Concept of an agile production system based on learning robots applied to disassembly
Lanza, G.; Asfour, T.; Beyerer, J.; Deml, B.; Fleischer, J.; Heizmann, M.; Furmans, K.; Hofmann, C.; Cebulla, A.; Dreher, C.; Kaiser, J.-P.; Klein, J.-F.; Leven, F.; Mangold, S.; Mitschke, N.; Stricker, N.; Pfrommer, J.; Wu, C.; Wurster, M.; Zaremski, M.
2022. at - Automatisierungstechnik, 70 (6), 504–516. doi:10.1515/auto-2021-0158
Attention Mechanism in Computer Vision: Current Status and Prospect
Wu, C.
2022. Proceedings of the 2021 Joint Workshop of Fraunhofer IOSB and Institute for Anthropomatics, Vision and Fusion Laboratory, 207–221, Karlsruher Institut für Technologie (KIT)
MotorFactory: A Blender Add-on for Large Dataset Generation of Small Electric Motors
Wu, C.; Zhou, K.; Kaiser, J.-P.; Mitschke, N.; Klein, J.-F.; Pfrommer, J.; Beyerer, J.; Lanza, G.; Heizmann, M.; Furmans, K.
2022. Procedia CIRP, 106, 138–143. doi:10.1016/j.procir.2022.02.168
2021
Learning Universal Vector Representation for Objects of Different 3D Euclidean formats
Wu, C.
2021. Proceedings of the 2020 Joint Workshop of Fraunhofer IOSB and Institute for Anthropomatics, Vision and Fusion Laboratory. Ed.: J. Beyerer; T. Zander, 155–170, KIT Scientific Publishing
Object Detection in 3D Point Clouds via Local Correlation-Aware Point Embedding
Fraunhofer IOSB; Wu, C.; Pfrommer, J.; Beyerer, J.; Li, K.; Neubert, B.
2021. 2020 Joint 9th International Conference on Informatics, Electronics & Vision (ICIEV) and 2020 4th International Conference on Imaging, Vision & Pattern Recognition (icIVPR), Kitakyushu, Japan, 26-29 Aug. 2020, Institute of Electrical and Electronics Engineers (IEEE). doi:10.1109/ICIEVicIVPR48672.2020.9306522
2020
Learning with Latent Representations of 3D Data: from Classical Methods to 3D Deep Learning
Wu, C.
2020. Proceedings of the 2019 Joint Workshop of Fraunhofer IOSB and Institute for Anthropomatics, Vision and Fusion Laboratory. Hrsg.: J. Beyerer; T. Zander, 133–149, KIT Scientific Publishing